GBGS Scheme

15E													SN
-----	--	--	--	--	--	--	--	--	--	--	--	--	----

Third Semester B.E. Degree Examination, Dec.2016/Jan.2017 Digital Electronics

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Define the following: i) TVUM Table; ii) Combinational circuit; iii) Cannonical SOP; iv) Cannonical POS. (04 Marks)
 - b. Obtain minimal expression using k-map for the following incompletely specified function: $F(a, b, c, d) = \sum_{m} (0,1,4,6,7,9,15) + \sum_{d} (3,5,11,13)$ and draw the circuit diagram using gates.

(06 Marks)

c. Write the truth table and design a circuit to generate o/p using K-map for the problem statement given: o/p of a combinational circuit having 4 inputs and an o/p, becomes logical '1' when two or more inputs goto logic level '1'. (06 Marks)

OR

- 2 a. Define K-map, incompletely specified function, essential prime implicants and grey code.
 (04 Marks)
 - b. Obtain minimal logical expression for the given maxterm expression using K-map. $f(a,b,c,d) = \underset{M}{\pi} (0,1,4,5,6,7,9,14). \underset{d}{\pi} (13,15). \tag{04 Marks}$
 - c. Use Quine McCluskey's method of minimization to obtain essential prime implicants and minimal expression for the following minterm expression:

$$f(a, b, c, d) = \sum_{m} (0, 1, 4, 5, 7, 8, 13, 15) + \sum_{d} (2).$$
 (08 Marks)

Module-2

- a. Define encoder, decoder, priority encoder and multiplexer.
 b. Write block diagram representation of a full adder using 3:8 decoders.
 (04 Marks)
 (04 Marks)
 - c. Design full adder using i) 8:1 MUX and ii) 4:1 MUX. (08 Marks)

OR

- 4 a. Explain Carry look ahead adder with neat diagram and relevant expressions. (08 Marks)
 - b. Design 2-bit comparator and briefly explain. (08 Marks)

Module-3

- 5 a. Define bistable element, latch, flip-flop and function table. (04 Marks)
 - b. Sketch timing diagrams for JK flipflop and D-flip-flop. (06 Marks)
 - c. Explain M/S JK flip-flop with the help of circuit diagram and waveforms. (06 Marks)

OR

6 a. Find characteristic equations for T and SR-flip-flops with the help of function tables.

(06 Marks)

- b. Write circuit diagram for the edge triggered D-flip-flop and provide explanation for different input condition. (06 Marks)
- c. Explain the operation of a switch debouncer built using SR-latch with the help of waveforms. (04 Marks)

Module-4

7 a. Define register, asynchronous ripple counter synchronous counter and ring counter.

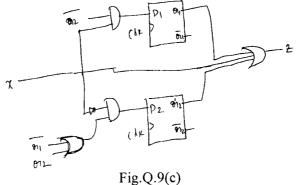
(04 Marks)

- b. Design mod-8 counter using right shift register. Use D-flip-flop to build register circuit. Explain the operation using function table. (06 Marks)
- c. Write timing diagrams, counting sequence and the logic diagram for 4-bit ripple counter and briefly explain. (06 Marks)

OR

8 a. Explain PIPO and SIPO operations using single diagram.

(06 Marks)

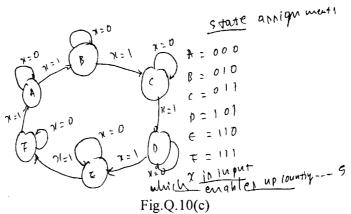

- b. Design Mod-6 synchronous counter using JK flip-flop. The sequence is 000, 001, 011, 100, 101, 111...000. (07 Marks)
- c. Write state diagram for Mod-5 self correcting counter and briefly explain. The sequence is 000, 001, 101, 110, 111, 000. (03 Marks)

Module-5

- 9 a. What are Melay and Moore models of a sequential circuit? Briefly explain with diagrams.
 (04 Marks)
 - b. Write characteristic/excitation table for JK flip-flop and explain.

(03 Marks)

c. Analyze the following sequential circuit. Writ excitation equations K-maps and state diagrams to analyze. (09 Marks)



OR

- 10 a. Write state diagrams for a four state machine using Melay and Moore models and briefly explain. (04 Marks)
 - b. What is a state table? Give an example.

(02 Marks)

c. Design a counter circuit for the following state table. Follow the standard steps for design.
(10 Marks)

